Pensar o cancro como um acidente de viação
Por: Gabinete de Comunicação - Universidade do Algarve
Grupo de investigação do CBMR trabalha diariamente para compreender, através da biologia computacional, quais as causas do “acidente”, que fatores podem ser influentes e de que modo a sua compreensão pode ajudar a prevenir “acidentes” no futuro. O objetivo é claro: identificar as mulheres que têm maior propensão a desenvolver cancro da mama e chegar lá mais cedo que a doença.
A conversa começa de modo simples: e se o cancro fosse um acidente de viação?
O grupo de investigação em Genómica Funcional do Cancro, liderado por Ana Teresa Maia, e focado especificamente no estudo do cancro da mama, o cancro mais comum entre as mulheres, oferece a resposta. Se o cancro pudesse ser equiparado, metaforicamente, a um acidente de viação, os investigadores deste laboratório seriam os peritos do acidente.
Partindo do princípio de que as causas do acidente são, à partida, desconhecidas, os investigadores têm, como explica Ramiro Magno, biólogo computacional e membro do grupo de investigação, “de equacionar uma série de hipóteses”. Neste caso, como adianta o investigador, “o acidente poderia estar, entre outras razões, relacionado com o automóvel ou com fatores externos ao automóvel (chuva, circunstâncias da estrada, etc.)”.
O mesmo acontece com o cancro. Partindo da premissa de que se trata de uma doença altamente heterogénea e complexa que se manifesta de maneiras muitos diferentes, cabe ao grupo de investigação compreender que partes do “automóvel” (aqui, metaforicamente, relacionado com o corpo humano) são importantes e podem estar associadas ao acidente, em particular, e à possibilidade de virem a ocorrer acidentes, em geral.
Como explica Joana Xavier, investigadora de pós-doutoramento, também a trabalhar no grupo, “tendo como base o conhecimento genético que leva ao risco para o cancro da mama tentamos compreender porque há mulheres mais predispostas do que outras a poder desenvolver a doença”.
O objetivo é, também ele, claro, e, como aponta Filipa Esteves, aluna de doutoramento a desenvolver investigação no grupo, “tudo passa pela prevenção”. É que, como clarifica, “com a recolha e análise de um conjunto de dados genéticos, que permitirão identificar determinados fatores influentes no desenvolvimento da doença, é possível compreender que mulheres poderão precisar de fazer rastreios mais frequentes e, assim, conseguir identificar a doença o mais depressa possível e com maiores probabilidades de tratamento”.
Usando uma interface, programa em “R”, uma linguagem de programação utilizada sobretudo na análise matemática e estatística, a equipa de Ana Teresa Maia procura, assim, instruir o computador para a análise de grandes conjuntos de dados genómicos que permitirão aos investigadores levantar importantes questões científicas.
Pode a maior ou menor expressão de um determinado gene influenciar, a longo prazo, a taxa de sobrevivência dos pacientes? Haverá determinadas regiões do genoma que estão particularmente associadas à probabilidade de desenvolver cancro? Se sim, quais e porquê?
É por forma a encontrar resposta para algumas destas questões que este grupo de Biologia Computacional trabalha todos os dias. Contando com o auxílio das ferramentas computacionais, os investigadores procuram extrair resultados que possam conduzir a possíveis respostas a partir da análise dos dados e do genoma.
Como adianta Ana Teresa Maia, líder do grupo de investigação, “a ideia é identificar as determinantes do risco para conseguir mapear na população quem são as mulheres que têm maior propensão e conseguir chegar lá mais cedo que a doença”. Mas, como explica a investigadora, o potencial do trabalho desenvolvido no Centro de Investigação em Biomedicina e, particularmente, no grupo de Genómica Funcional, não se esgota aqui, uma vez que “o conhecimento produzido pelo grupo pode ajudar, do ponto de vista clínico, a que sejam desenhadas e desenvolvidas terapias que possam, no futuro, vir a baixar o risco de desenvolver a doença”.
Como acrescenta “ao compreender os mecanismos por detrás do processo” e ao estudar os dados genéticos é possível “adaptar e refinar os mecanismos de despiste e deteção da doença”.
Para o grupo de trabalho, composto por 5 investigadores internos e 5 colaboradores externos, só uma coisa interessa: compreender as causas do acidente, porque ocorreu e quais os fatores determinantes para conseguir preveni-lo no futuro.
Gabinete de Comunicação - Universidade do Algarve
© 2017 - Ciência na Imprensa Regional / Ciência Viva
Gabinete de Comunicação - Universidade do Algarve
Veja outros artigos deste/a autor/a.
Escreva ao autor deste texto
Ficheiros para download Jornais que já efectuaram download deste artigo